Conformation of N(9)-(β -D-arabinofuranosyl) adenine 5'-monophosphate (ara-AMP) in anhydrous dimethylsulphoxide monitored by ¹³C NMR

Igor A. Mikhailopulo* and Friedrich Cramer

Max-Planck-Institut für experimentelle Medizin, Abteilung Chemie, Hermann-Rein-Str. 3, 3400 Göttingen, FRG
Received 17 May 1982

1. INTRODUCTION

The conformation of nucleosides and nucleotides plays an important role in their interaction with enzymes and other cellular components. This is best exemplified by the antiviral activity of 9- β -D-(arabinofuranosyl) adenine (ara-A) [1-3]. The assumption has been made [2] that this activity is due to different conformational requirements of the host-cell and viral nucleoside kinase. The aim of this work is to determine the conformation of the ara-AMP molecule as a free acid in anhydrous dimethylsulphoxide using 3J (CH) and 3J (CP) values.

2. MATERIALS AND METHODS

Ara-A (1 g = 3.74 mmol) from Serva (Heidelberg) was converted to ara-AMP by 0.52 ml (6 mmol) of POCl₃ in 10 ml PO(OMe)₃ during 24 h at 0° C [4]. The reaction mixture was then treated with ether, the oil-like residue dissolved in 5 ml H₂O, kept for 1 h at 0° C, then treated with acetone and ether and the precipitate dissolved in H₂O and applied to a 1.2 × 40 cm Sephadex A-25 column (130 ml, AcO form). The column was eluted using a linear gradient of H₂O-1 N CH₃-COOH(1 leach). The ara-AMP containing fractions (\sim 0.5-0.7 N CH₃-COOH) were combined, evaporated to dryness in vacuo and yielded chromatographically and electrophoretically homogeneous 0.885 g

* Permanent address: Institute of Bioorganic Chemistry, Byelorussian SSR Academy of Sciences, 220733 Minsk, Zhodinskaya 5/2, USSR.

(68%) ara-AMP as a white powder. The ¹³C NMR spectra were recorded on a Bruker HFX 60 spectrometer equipped with Bruker-Data-System B-NC 12 for operation in the Fourier-transform mode.

3. RESULTS AND DISCUSSION

Assignments of the 13 C resonances of the heterocyclic moiety of ara-AMP (table 1) are based on the data in [5] for 5'-AMP, and proved by characteristic values of ^{1}J (CH) and ^{3}J (CH) (table 2), established for N(9)-adenine nucleosides [6]. Assignments of the 13 C signals of the carbohydrate moiety of ara-AMP (table 1) were made by using the values of ^{1}J (CH) [6–8] and ^{2}J and ^{3}J (CP) [9–11].

Ara-AMP was obtained as free acid and we assume it to exist as an inner salt with a monoionized phosphate group and a protonated heterocyclic base. However, in the ¹³C NMR spectrum of ara-AMP in anhydrous dimethylsulphoxide* no appreciable shift of the ¹³C signals of the heterocyclic base characteristic of the protonated form was observed [5,12,13].

* In the ¹³C NMR spectra of 5'-monophosphates of N(9)-(3-chloro-3-deoxy-β-D-xylofuranosyl) adenine and N(9)-(2-chloro-2-deoxy-β-D-arabinofuranosyl) adenine recorded in D₂O we observed the ¹³C signal shifts characteristic of the protonated form of the base. The most populated conformational arrangement of both compounds appears to be anti/gauche—gauche (all trans) [14]. The low solubility of ara-AMP precluded the recording of the ¹³C NMR spectrum in D₂O

Table 1 ^{13}C chemical shifts^a $\delta_{\text{TMS (internal)}}$ of ara-AMP

Agly			n			Carbohydrate moiety		
C-6	C-2	C-4	C-8	C-5	C-1'	C-2'/C-3'	C-4′	C-5'
155.10	151.41	149.14	140.66	118,12	83.99	75.51/75.19	82.40	64.95

^a Taken from a noise-decoupled Fourier-transform spectrum of 5000 transients for a saturated solution of ara-AMP in d₆-dimethylsulphoxide; spectral width 66.6 Hz/cm

The analysis of the 3J C(4)-H(1') and C(8)-H(1') values (table 2) unequivocally favours a predominant syn population for the conformation about the N-glycosyl bond. From the dependence of 3J (CH) on a dihedral angle [15,16], it can be assumed that the values of 3J (CH) from 0° -90° should be lower than those from 90°-180°. Thus, the simultaneous measurement of the 2 values of 3J (CH) between H-1' and 2 ${}^{13}C$ atoms vicinal to the nitrogen atom bearing a carbohydrate fragment allowed us to make conformational assignments for the N-glycosyl bond. The qualitative approach used here was employed in [7,8,17,18].

The results is rather unexpected:

(i) A crystalline ara-A has an *anti* conformation [19]. From the ¹H NMR data for dilute aqueous solutions of ara-A and ara-AMP (pH ~9) an *anti* conformation has been proposed [20].

(ii) In the case of 5'-AMP the main conformation appears to be the anti conformation about the N-glycosyl bond and the gauche—gauche conformation about the C(4')—C(5') bond [18,21]. Based on the ¹³C NMR spectroscopy data for adenosine and 5'-AMP it was suggested [22] that the 5'-phosphate group decreases the population of syn conformation.

The analysis of the 3J C(4')—P value (table 2) regarding the most populated of the 3 staggered rotamers about the C(5')—O(5') bond [10,11] singles out the gauche—gauche conformation as the most densely populated (\sim 85%). Hence, the conformation all-trans (fig.1) is the most populated in the molecular fragment P—O(5')—C(5')—C(4')—H(4') of ara-AMP, as in the case of natural nucleoside 5'-monophosphates [18]. The syn conformation of the heterocyclic base about the glycosyl bond would

Table 2
Coupling constants of ara-AMP

^{1}J	(CH)	(Hz) ^a :	H-8 H-2 214.5 201.0	H-1' 165.4	H-2'/H-3' 149.0/149.3	H-4′ 156.0	H-5' 147.0					
3J	(CH)	(Hz) ^b :	C(8)-H(1')	C(4)~H(1') 4.4	C(6)-H(2) 10.8	C(4)-H(2) 13.2	C(4)-H(8) < 0.5					
J	(CP)	(Hz) ^c :	C(4')-P 8.79	C(5')-P 4.64								

^a Taken from a proton-coupled Fourier-transform spectrum of 28 000 transients; spectral width 300 Hz/cm

b Taken from a proton-coupled Fourier-transform spectrum with spectral width 16.66 Hz/cm

^c Taken from a proton-decoupled Fourier-transform spectrum with spectral width 66.6 Hz/cm

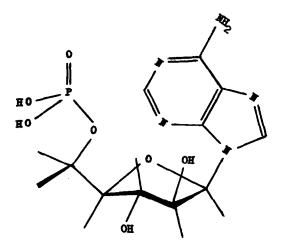


Fig. 1. Structural formula and the most populated spatial arrangement of the ara-AMP molecule.

lead to a steric interaction of the latter with the phosphate group, and hence to a decrease in the population of the gauche-gauche conformation. However, in the case where one assumes the existence of the ara-AMP molecule in the C(4')-exo or/and C(1')-exo conformations of the pentofuranose ring, then a syn/gauche-gauche conformational combination for the ara-AMP would seem quite probable. In this respect two facts are worth mentioning:

- (i) A higher conformational mobility of the furanose ring is assumed for *arabino* nucleosides as distinct from ribofuranosides [19,23,24];
- (ii) A theoretical conformational analysis of the ara-A molecule revealed the energy minimum for positioning the heterocyclic base in the *syn* region with a torsion angle value χ of 190-250° [3].

ACKNOWLEDGEMENTS

We are grateful to Mr B. Seeger for recording ¹³C NMR spectra. I.A.M. is deeply thankful to the Alexander von Humboldt Stiftung for a fellowship and financial support.

REFERENCES

- [1] Cass, C.E. (1979) in: Antibiotics, vol. 5/pt 2, Mechanism of Action of Antieukaryotic and Antiviral Compounds (Hahn, F.E. ed) pp. 85-109, Springer-Verlag, Berlin, New York.
- [2] Miles, D.L., Miles, D.W., Redington, P. and Eyring, H. (1977) J. Theor. Biol. 67, 499-514.
- [3] Miles, D.L., Miles, D.W. and Eyring, H. (1977) Proc. Natl. Acad. Sci. USA 74, 2194—2198.
- [4] Yoshikawa, M., Kato, T. and Takenishi, T. (1967) Tetrahedron Lett., 5065-5068.
- [5] Dorman, D.E. and Roberts, J.D. (1970) Proc. Natl. Acad. Sci. USA, 65, 19–26.
- [6] Akhrem, A.A., Mikhailopulo, I.A. and Abramov, A.F. (1979) Org. Magn. Resn. 12, 247-253.
- [7] Akhrem, A.A., Zaitseva, G.V., Mikhailopulo, I.A. and Abramov, A.F. (1977) J. Carbohyd. Nucleos. Nucleot. 4, 43-63.
- [8] Davies, D.B. (1976) Studia Biophysica 55, 29-38.
- [9] Mantsch, H.H. and Smith, I.C.P. (1972) Biochem. Biophys. Res. Commun. 46, 808-815.
- [10] Schleich, T., Cross, B.P. and Smith, I.C.P. (1976) Nucleic Acids Res. 3, 355-370.
- [11] Alderfer, J.L. and Ts'o, P.O.P. (1977) Biochemistry 16, 2410–2416.
- [12] Pugmire, R.J. and Grant, D.M. (1971) J. Am. Chem. Soc. 93, 1880—1887.
- [13] Voelter, W., Bürvenich, C. and Breitmaier, E. (1972) Angew. Chem. 84, 589–590; Angew. Chem. Int. Ed. Engl. 11, 539–540.
- [14] Mikhailopulo, I.A. and Cramer, F. (1981) unpublished observation.
- [15] Lemieux, R.U., Nagabhushan, T.L. and Paul, B. (1972) Can. J. Chem. 50, 773-776.
- [16] Delbaere, L.T.J., James, M.N.G. and Lemieux, R.U. (1973) J. Am. Chem. Soc. 95, 7866-7868.
- [17] Plochocka, D., Rabczenko, A. and Davies, D.B. (1977) Biochim. Biophys. Acta 476, 1-15.
- [18] Davies, D.B. (1978) Progr. Nucl. Magnetic Res. Spectr. 12, 135-226.
- [19] Bunick, G. and Voet, D. (1974) Acta Cryst. B30, 1651–1660.
- [20] Remin, M., Darzynkiewicz, E., Ekiel, I. and Shugar, D. (1976) Biochim Biophys. Acta 435, 405–416.
- [21] Sarma, R.H., Lee, C.-H., Evans, F.E., Yathindra, N. and Sundaralingam, M. (1974) J. Am. Chem. Soc. 96, 7337-7348.
- [22] Uesugi, S. and Ikehara, M. (1978) Chem. Pharm. Bull. 26, 3040-3049.
- [23] Danyluk, S.S. (1979) in: Nucleoside Analogues. Chemistry, Biology and Medical Applications. (Walker, R.T. et al. eds) pp. 15-34, Plenum, London, New York.
- [24] Birnbaum, G.I., Watanabe, K.A. and Fox, J.J. (1980) Can. J. Chem. 58, 1633-1638.